В диссертационный совет Д 212.092.01 ФГБОУ ВО «Комсомольский-на-Амуре государственный технический университет» ученому секретарю, канд. техн. наук Пронину А.И.

ОТЗЫВ

на автореферат диссертационной работы Медведевой Ольги Ивановны «Повышение работоспособности алмазных кругов на металлической связке за счет блокирования засаленного слоя и работы их в режиме самозатачивания», представленной на соискание ученой степени кандидата технических наук по специальности 05.02.07 - Технология и оборудование механической и физикотехнической обработки

1. Актуальность темы и научные результаты

Процесс засаливания является основной причиной снижения работоспособности шлифовального инструмента. Вопросам производительности шлифования за счет применения токопроводящих алмазных и абразивных кругов и создания специального оборудования для электрохимического шлифования всегда уделялось большое внимание. Комбинированное электрохимическое шлифование с одновременной правкой шлифовального круга является перспективным методом затачивания инструментов из твердых сплавов.

Выбор в качестве темы и направленности исследования именно этих вопросов, важных с научной и практической точек зрения, позволяет считать рассматриваемую диссертацию соискателя Медведевой О.И. актуальной.

Такие направления как: а) исследование механизма образования засаливания за препятствующих возникновению получающихся защитных пленок, замены обычных электролитов путем засаленного слоя, a также б) обеспечение характеристик инновационные; высококачественных обрабатываемых поверхностей за счет сведения к минимуму структурных поверхностных слоях шлифуемых поверхностей, а также изменений

исключения механического разрушения обрабатываемого материала в результате его пластической деформации; в) увеличение производительности электрохимической алмазной обработки твердосплавного инструмента и другие результаты имеют признаки **научной новизны.** В значительной степени новизна работы, автореферат которой рассматривается, подтверждена выполнением задания Минобрнауки РФ по разработке теоретических основ контактного взаимодействия при алмазной обработке новых наноупрочненных материалов.

Практическая значимость результатов полученных соискателем во многом определяется объектами изучения и разработок, которые подвергались исследованиям впервые.

Представленные соискателем в автореферате научные положения, рекомендации и выводы, можно считать обоснованными, так как в работе имеются:

- ссылки на вполне современные методы исследований;
- разработанные и защищенные как объекты интеллектуальной собственности 4 патента;
 - достаточная степень освещения результатов исследований в печати.

Перечисленные новые зависимости и взаимосвязи получены автором **лично**, дополняют теорию процессов физико-технической обработки в части электрохимического шлифования твердых сплавов и позволяют осуществлять выбор соответствующей рациональной технологии.

Разработанные в рамках рассматриваемой диссертации приемы рационализации технологических процессов могут быть использованы в лабораторной работе для подготовки студентов, обучающихся по ряду специальностей в рамках направления 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств».

2. Основные замечания по автореферату.

а) в формулах (1) и (2) не приведено описание (расшифровки) переменной Θ , что с математической точки зрения некорректно;

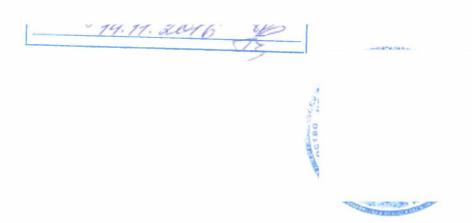
- б) есть путаница в терминологии: на стр. 16-17 в выводах попеременно процесс шлифования называется «электроалмазным» и «электрохимическим»
- в) в автореферате не отмечено, какие существуют резервы для повышения эффективности электрохимического алмазного шлифования в инструментальном производстве при вышлифовке концевого инструмента из цельных твердосплавных заготовок;
- г) не указано, рассматривался ли реально такой массовый вариант, как заточка напайного инструмента, в котором сочетается твердый сплав режущей части и конструционная сталь державки;
- д) нет ссылок на работы, выполненные в ИСМ им. В.Н. Бакуля в 1970-е годы по электрохимическому шлифованию твердых сплавов и жаропрочных материалов;
- е) автореферат не содержит сведений о результатах практического использования разработанных рекомендаций в промышленности.

Перечисленные замечания носят характер предложений к исправлению и могут быть учтены в последующей научной работе соискателя.

3. Заключение

В диссертационной работе Медведевой Ольги Ивановны получены новые научно-обоснованных решений виде ПО повышению результаты работоспособности алмазных кругов на металлической связке за счет блокирования засаленного слоя и работы их в режиме самозатачивания, что дает возможность обобщения полученных результатов и рекомендации их ДЛЯ отраслей производственных условиях на предприятиях машиностроения.

Основу диссертационной работы Медведевой О.И. составляют результаты экспериментальных исследований, которые выполнены, обработаны и обобщены лично автором или при его непосредственном участии. Личный вклад соискателя установлен при подробном рассмотрении публикаций, перечисленных в автореферате.


В целом, судя по автореферату, диссертация является законченной научноквалификационной работой, в которой изложены научно обоснованные технические и технологические решения и разработки, имеющие существенное значение для развития страны, то есть соответствует п. 9 «Положения о порядке присуждения ученых степеней» (в редакции от 24.09.2013 №842).

Из автореферата следует, что диссертация Медведевой Ольги Ивановны является самостоятельной научной работой, обладает внутренним единством, содержит новые научные результаты и свидетельствует о личном вкладе автора в науку. Медведева Ольга Ивановна заслуживает присуждения ей ученой степени кандидата технических наук по специальности 05.02.07 — Технология и оборудование механической и физико-технической обработки.

Отзыв подготовил Маслов Андрей Руффович, д-р техн. наук, профессор, ФГБОУ ВО «МГТУ «СТАНКИН», профессор кафедры высокоэффективных технологий обработки, 127994, Москва, Вадковский пер., д.1. Тел. 8(499)972-94-92.

E-mail: amaslov@stankin.ru

А.Р. Маслов 14 ноября 2016 г.

